Basic monitor structure
Independent of language support
int readers=0;
mutex writelock=false;
condvar canWrite;
condvar canRead;

void	beginRead()
{
if writelock or writer_queued then wait(canRead);	// proceed if allowed
readers++;			//count them
signal(canRead);
// here we can access the data while other readers can do so too
}

void endRead()
{
--readers; // just finished a reader
// put results in caller’s variable. We CANNOT use a returned value to do it, because that stops the execution before we can do the signal in the next statement. If we move the signal to be ABOVE the setting of the returned value, then a writer could CHANGE that value before we return it.
if readers==0 then signal(canWrite); 	// allow a writer if any
}

void beginWrite()
{
if readers>0 or writelock then wait (canWrite);
writelock=true;			//only current writer has access
// here the current writer can update the data
}

void endWrite()
{
writelock=false;
if reader_queued then signal (canRead);
else signal(canWrite);
}

These 4 functions could be encapsulated in a “class” with termination (destructor) functions that invoke endRead and endWrite for the caller. The endRead & endWrite functions would then be private.

What’s missing?
· Calls to create the Reader and Writer function threads (loops for each)
· Parameters into the monitor functions (so they know what data to write or where to put results
· Function called Reader that outputs the data from the monitor
· Function called Writer that prepares the data to be written by the monitor
